
Python SDK to upload mail to Vaultastic Active Store

Overview
This document contains the instructions to use the Python SDK to upload data to the Vaultastic Active
Store using the Vaultastic Mail Upload API.

Prerequisites
1. You should have your Vaultastic domain provisioned.

2. You should have created the vaults in the Active Store to which you want to upload the data

3. You have got the API key from Mithi.

4. You should have Python version 3.6 or above.

5. The following are the dependencies:

argparse

io

json

logging

sys

requests

socket

time

uuid

email

6. The following environment variables should be set

a. PRIMARY_DOMAIN: The primary domain name for filtering vaults from the mail.

b. API_ENDPOINT_URL: ActiveStoreMailUploadAPI.vaultastic.com

c. API_KEY: The API Key shared for uploading mail to v4.

Uploading mail
To upload mail to a vault in the Active Store of your Vaultastic domain use the script
VaultasticActiveStoreMailUpload.py

The command line arguments are as follows:

1. -i where is the path of the EML file.

2. -m where are the mail contents

3. -r where are the comma separated list of ids on the primary domain

4. -s where the sender is an id on the primary domain

Important Note:

1. Use either -i or -m option but not both. If both are used the -m value will be ignored.

2. Use -r and -s only if the sender or recipient is not part of the mail headers From, To, CC or BCC

www.mithi.com

VaultasticActiveStoreMailUpload-API-SDK Exit Codes and Messages

Exit Code Description Resolution

0 Mail Successfully uploaded N.A.

1 Unknown Exception This is the exit code returned when there is
no other specific exit code defined for the
error that occurred. More Information can
be found in the message/stack trace
printed by python.

2 Misuse of shell builtins (UNIX reserved error) Missing keyword or command, or
permission problem (and diff return code
on a failed binary file comparison)

3 Invalid number of arguments invalid number of arguments passed.
Provide at least -i or -m.

4 Invalid Recipient Invalid Recipient Email ID. Make sure the id
passed on -r argument is a valid email id (or
email id's are comma separated).

5 Failed to Upload mail to S3 Mail Failed to upload to s3 bucket. Check
Error logs for the failed message.

6 Recipients not from PRIMARY_DOMAIN At least one recipient should be from the
primary domain.

1. Check if PRIMARY_DOMAIN is correct OR
2. Check any of the recipients in the mail
(from, to, cc or bcc headers) is from the
PRIMARY_DOMAIN. OR
3. Provide a recipient id using the -r
argument.

Limits

1. No multi-domain support. That is recipient filtering based on multiple PRIMARY_DOMAIN values is not

supported.

2. Rate Limits: 10,000 Requests per second with 5000 Burst requests.

3. Max Mail Size: 50MB

Resources
VaultasticActiveStoreMailUpload-SDK-1.0.2.zip (http://vaultastic.mithi.com/res/VaultasticActiveStoreMailUpload-SDK-

1.0.2.zip)

Example Implementations

Method 1: Implementation of VaultasticActiveStoreMailUpload-SDK on SNS triggered
Lambda using subprocess

Pre-Requisites

www.mithi.com

 1. Memory Required: 128MB (for up to 10MB Mails)

 2. Lambda Timeout: 3 mins (180 seconds)

 3. Runtime: Python 3.6

 4. Handler: lambda_function.lambda_handler

 5. Environment Variables:

 a) API_ENDPOINT_URL: https://vaultasticactivestoremailuploadapi.vaultastic.com

 b) API_KEY:

 c) PRIMARY_DOMAIN:

 6. Make sure Lambda has Internet access. (for VPC Lambda see this:
https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/)

Sample code to run VaultasticActiveStoreMailUpload-SDK on SNS triggered Lambda :

1. Using the sample code given create a Python script (lambda_function.py)

import subprocess

def lambda_handler(event, context):
 #assuming lambda is triggerd by SNS
 #extract message from SNS event
 message = event['Records'][0]['Message']

 filepath = '/tmp/uploadmailToV4.eml'

 file1 = open(filepath,'w')
 #write message to file
 file1.write(message)
 file1.close()

 #call VaultasticActiveStoreMailUpload.py as subprocess
 exit_code = subprocess.call("python VaultasticActiveStoreMailUpload.py -i "+filepath, shell=True)
 print(exit_code)

2. Add this lambda_function.py to the VaultasticActiveStoreMailUpload-SDK.zip.

3. Upload zip to Lambda Function with the above parameters.

Method 2: Implementation of VaultasticActiveStoreMailUpload-SDK without using the
subprocess module on S3 triggered Lambda:

Pre-Requisites

 1. Memory Required: 128MB (for up to 5MB Mails) - more memeory required as the mail content resides
in the same process

 2. Lambda Timeout: 3 mins (180 seconds)

 3. Runtime: Python 3.6

 4. Handler: lambda_function.lambda_handler

www.mithi.com

 5. Environment Variables:

 a) API_ENDPOINT_URL: https://vaultasticactivestoremailuploadapi.vaultastic.com

 b) API_KEY:

 c) PRIMARY_DOMAIN:

 6. Make sure Lambda has Internet access. (for VPC Lambda see this:
https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/)

Sample code to run VaultasticActiveStoreMailUpload-SDK without a subprocess:

1. Using the sample code given create a Python script (lambda_function.py)

import os
import boto3
import io
from VaultasticActiveStoreMailUpload import uploadMailToVaultasticActiveStore

def lambda_handler(event, context):
 #assuming lambda is triggerd by S3
 #extract message from S3 event
 bucketName = event['Records'][0]['s3']['bucket']['name']
 objectPath = event['Records'][0]['s3']['object']['key']

 s3Client = boto3.client('s3')
 s3Object = s3Client.get_object(Bucket=bucketName,Key=objectPath)

 message = s3Object['Body'].read().decode()

 uploadMailToVaultasticActiveStore(message)

2. Add this lambda_function.py to the VaultasticActiveStoreMailUpload-SDK.zip.

3. Upload zip to Lambda Function with the above parameters.

4. Send a mail using SNS and it should upload to v4-s3 with exit code 0.

Choosing the right method

The method to choose depends on a number of parameters as highlighted below

Parameter
Method 1: Subprocess

method

Method 2: Function

method

Target vault

Has to be used when

the target vault is not

part of the mail

header (from, to, cc or

bcc field)

Can only be used

when the target vault

is part of the mail

header

www.mithi.com

Mail body

Has to be used when

the mail content is

fetched from another

process

Can only be used

when mail content is

available locally

Error

handling

Has to be used for

comprehensive error

handling

Can be used when

only success or failure

has to be checked

Performance

requirements

Can take upto 6-15

seconds depending on

the mail size

Can take 2-15

seconds depending

on mail size

Memory

requirements

Lambda with 128 MB

can handle mail upto

10 MB

Lambda with 128 MB

can handle mail upto

5 MB (as mal content

are part of the

process)

Programming

expertise
Moderate High

www.mithi.com

